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The similarities and differences between Newton-Raphson Method (NRM) and Fixed-Point Method (FPM) in finite element 
computation incorporating a vector Jiles-Atherton hysteresis model is presented in this paper. The importance of the constitutive 
equation and the differential reluctivity is first introduced. The governing equation is derived based on the constitutive equation, and it 
is available for both NRM and FPM. The whole expression of Jacobian matrix is derived, which increases the convergence rate 
significantly when adopting NRM. The system equations when adopting NRM and FPM have the same form if the Jacobian matrix is 
simplified. The iteration performance of NRM and FPM is tested by computing a current excited magnetic core. The difference on 
iteration performance is analyzed. The computed results by using NRM and FPM are compared. The detail FEM computation 
algorithm is not given in the digest due to the page limits. The experimental measured results will be provided and compared with the 
computed ones in the full paper.  
 

Index Terms— Finite Element Method, Fixed-Point Method, Newton-Raphson Method, Vector Hysteresis model. 
 

I. INTRODUCTION 

agnetic hysteresis is one of the natural phenomenon of 
ferromagnetic materials. Magnetic field computation 

using numerical techniques, such as, finite element method 
(FEM) taking account of hysteresis models, can provide more 
precise approximation to the real situation, such as distorted 
current waveforms, iron loss, etc. Due to the complexity of 
material properties, there still exist challenges when 
embedding the vector hysteresis models directly in the FEM. 
Several iteration techniques have been investigated and 
applied to do the hysteretic nonlinear iterations, such as direct 
iteration method, fixed-point method (FPM), Newton-Raphson 
method (NRM) [1]-[4]. Whatever iteration method adopted, 
convergence rate and stability are in the first considerations. 

For FPM, the convergence is relative easy to be guaranteed, 
while the convergence rate is usually slow. For NRM, the 
Jacobian matrix are calculated from the derivatives of 
constitutive equation, which increases the risk of divergence. 
However, the convergence speed of NRM is faster than that of 
FPM. To speed up the convergence rate of FPM, some 
techniques are proposed and developed [2]. To guarantee the 
convergence of NRM, the Jacobian matrix must be calculated 
in a proper way.   

This paper derives the system equations of FEM when 
using FPM and NRM solving nonlinear magnetic fields 
incorporating a vector hysteresis model. For both NRM and 
FPM, the same constitutive equation is adopted. The 
differential reluctivity is the key issue to ensure the 
convergence and computation efficiency for both methods. A 
vector Jiles-Atherton hysteresis model that can describe both 
isotropic and anisotropic materials is adopted here [5]. It is 
found that the system equations have the same form for both 
FPM and NRM when the Jacobian matrix is simplified. The 
whole expression of the Jacobian matrix is also derived, which 

is the originality of this paper. By computing the whole 
Jacobian matrix, the convergence rate will be significantly 
increased when adopting NRM. Due to the page limits, this 
part will be given in detail in the full paper. 

II.  CONSTITUTIVE EQUATION 

The constitutive law of magnetic materials can be expressed 
by many kinds of equations.  A common one that follows the 
physical magnetizing principle is as follows, 

 0 B H M  (1) 

where μ0 is the vacuum permability , B is the magnetic 
induction vector, H is the magnetic field intensity vector, M is 
the magnetization of the material. In FEM, however, B is 
obtained directly from the vector potential during the iteration 
process, and therefore, a more general expression of the 
constitutive law is as follow,  

  M H B R  (2) 

where [ν] is a tensor representing reluctivities which can be 
constants or variables, and RM is the remain part that is a func-
tion of B.  

In early publications, [ν] is usually taken as a constant when 
adopting FPM [1], mainly considering of the iteration algo-
rithm, and stiffness matrix does not need to be updated during 
the iterations. Later in some literatures [2][3], [ν] is treated as 
variables to speed up the convergence rate of FPM. It can be 
derived that the convergence rate is most fast when [ν] equals 
to the differential reluctivity at the iteration point.  

NRM is widely adopted in FEM when dealing with the 
single valued B-H curve. However, when embedding the 
hysteresis model in FEM, the general equation B=μH does not 
work, as B is a multivalued function. It is natural to think of (2) 
as a alternate expression, and the problem will be how to 
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choose [ν]. In NRM, the derivative of the function is used to 
find the root, while the whole derivative may not be easily 
obtainable due to the complexity of governing equations and 
hysteresis models. Therefore, [ν] must be set properly to make 
sure that the Jacobian matrix is close to the derivative of the 
function. One choice is to used the differential reluctivity, 
which represents the derivative of the hysteresis loop directly. 
Furthermore, the differential reluctivity can be obtained from 
the hysteresis model directly. 

III. FIELD EQUATIONS 

Substitute the constitutive equation (2) into Maxwell 
equations, results the following field equations, 

  M s  B R J                               (3) 

where Js is the current density,   x
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is a tensor, νx, 

νy are made equal to the differential reluctivities of rolling and 
transverse directions, respectively. The eddy current effect is 
not included in the formulation. Applying the Galerkin’s 
approximation gives the following equation [6], 

      M sd d d
  

            A N R N J N

(4)

 where N, and A are the shape function, and magnetic vector 
potential, respectively. For FPM, with the initial value of [ν], 
the magnetic vector potentials are computed, and then RM on 
the left of (4) is updated till the computation results satisfy the 
stop criterion. The new [ν] will be computed according to the 
history values of differential reluctivity.  

For NRM, the residual Ri can be directly obtained from (4)， 
and the Jacobian matrix can be derived as follows, 
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If only the first item in (5) is taken into account, the system 
equations using NRM are same with the ones when adopting 
FPM. The only difference will be how [ν] is computed. For 
FPM, [ν] is computed from the history values of differential 
reluctivity, while for NRM, [ν] is computed from the current 
time step. The differential reluctivity is computed from the 
field values of adjacent time steps. The Jacobian matrix and 
the residual are updated for each iteration. The computation 
will move to next time step till the residual error is smaller 
than the criterion value.  

IV. COMPARISON OF COMPUTED RESULTS 

The FEM program is developed based on the above 
governing equations and the vector hysteresis model. Both 
NRM and FPM are implemented. The detail computation 
algorithm will be introduced in the full paper. The proposed 

algorithm is implemented to calculate the magnetic field of a 
rectangular magnetic core with a sinusoidal current excitation. 
Fig. 1 shows the comparison of iterations in one period 
between FPM and NRM. Generally speaking, the convergence 
rate of NRM is faster than FPM. The computed B locus by 
both NRM and FPM in one element is shown in Fig. 2. The 
detail analysis and experiment results will be given in the 
fullpaper.   
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Fig. 1. The statistics of iterations of NRM and FPM. 
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Fig. 2. The computed B loci by NRM and FPM respectively.  
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